Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra
 §2-4. Matrix Inverses

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on 02/01/2021)

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

The Identity and Inverse Matrices

Definition

For each $\mathrm{n} \geq 2$, the $\mathrm{n} \times \mathrm{n}$ identity matrix, denoted I_{n}, is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $\mathrm{n} \geq 2$.

Example

$$
\mathrm{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathrm{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Definition

Let $\mathrm{n} \geq 2$. For each $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$, we denote by $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$ the $\mathrm{j}^{\text {th }}$ column of I_{n}.

Example

When $\mathrm{n}=3, \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \overrightarrow{\mathrm{e}}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

Theorem

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. Then $\mathrm{AI}_{\mathrm{n}}=\mathrm{A}$ and $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}$.

Proof.

The (i, j)-entry of AI_{n} is the product of the $\mathrm{i}^{\text {th }}$ row of $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, namely $\left[\begin{array}{llllll}a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n}\end{array}\right]$ with the $\mathrm{j}^{\text {th }}$ column of I_{n}, namely $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$. Since $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$ has a one in row j and zeros elsewhere,

$$
\left[\begin{array}{llllll}
a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n}
\end{array}\right] \vec{e}_{j}=a_{i j}
$$

Since this is true for all $\mathrm{i} \leq \mathrm{m}$ and all $\mathrm{j} \leq \mathrm{n}, \mathrm{AI}_{\mathrm{n}}=\mathrm{A}$.
The proof of $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}$ is analogous-work it out!

Instead of AI_{n} and $\mathrm{I}_{\mathrm{m}} \mathrm{A}$ we often write AI and IA , respectively, since the size of the identity matrix is clear from the context: the sizes of A and I must be compatible for matrix multiplication.

Thus

$$
\mathrm{AI}=\mathrm{A} \quad \text { and } \quad \mathrm{IA}=\mathrm{A}
$$

which is why I is called an identity matrix - it is an identity for matrix multiplication.

Definition (Matrix Inverses)

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $\mathrm{BA}=\mathrm{I}_{\mathrm{n}}$.

Remark

Note that since A and I_{n} are both $\mathrm{n} \times \mathrm{n}, \mathrm{B}$ must also be an $\mathrm{n} \times \mathrm{n}$ matrix.

Example
Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$. Then

$$
\mathrm{AB}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore, B is an inverse of A.

Problem

Does every square matrix have an inverse?

Solution
No! Take e.g. the zero matrix \mathbf{O}_{n} (all entries of \mathbf{O}_{n} are equal to 0)

$$
\mathrm{AO}_{\mathrm{n}}=\mathrm{O}_{\mathrm{n}} \mathrm{~A}=\mathbf{O}_{\mathrm{n}}
$$

for all $\mathrm{n} \times \mathrm{n}$ matrices A : The (i, j)-entry of $\mathrm{O}_{\mathrm{n}} \mathrm{A}$ is equal to $\sum_{\mathrm{k}=1}^{\mathrm{n}} 0 \mathrm{a}_{\mathrm{kj}}=0$.

Problem

Does every nonzero square matrix have an inverse?

Problem

Does the following matrix A have an inverse?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Solution
No! To see this, suppose

$$
B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is an inverse of A. Then

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{c} & \mathrm{~d} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

which is never equal to I_{2}. (Why?)

Theorem (Uniqueness of an Inverse)
If A is a square matrix and B and C are inverses of A , then $\mathrm{B}=\mathrm{C}$.

Proof.
Since B and C are inverses of $\mathrm{A}, \mathrm{AB}=\mathrm{I}=\mathrm{BA}$ and $\mathrm{AC}=\mathrm{I}=\mathrm{CA}$. Then

$$
\mathrm{C}=\mathrm{CI}=\mathrm{C}(\mathrm{AB})=\mathrm{CAB}
$$

and

$$
\mathrm{B}=\mathrm{IB}=(\mathrm{CA}) \mathrm{B}=\mathrm{CAB}
$$

so $\mathrm{B}=\mathrm{C}$.

Example (revisited)
For $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$, we saw that

$$
\mathrm{AB}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The preceding theorem tells us that B is the inverse of A , rather than just an inverse of A.

Remark (notation)

Let A be a square matrix, i.e., an $\mathrm{n} \times \mathrm{n}$ matrix.
\downarrow The inverse of A , if it exists, is denoted A^{-1}, and

$$
\mathrm{AA}^{-1}=\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}
$$

- If A has an inverse, then we say that A is invertible.

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Finding the inverse of a 2×2 matrix

Example

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then there is a formula for A^{-1} :

$$
\mathrm{A}^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left[\begin{array}{rr}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right] .
$$

This can easily be verified by computing the products AA^{-1} and $\mathrm{A}^{-1} \mathrm{~A}$.

$$
\begin{aligned}
\mathrm{AA}^{-1} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{a d-b c}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]\right) \\
& =\frac{1}{a d-b c}\left[\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Showing that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}_{2}$ is left as an exercise.

Remark

Here are some terminology related to this example:

1. Determinant:

$$
\operatorname{det}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right):=\mathrm{ad}-\mathrm{cd}
$$

2. Adjugate:

$$
\operatorname{adj}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right):=\left(\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right)
$$

Problem

Suppose that A is any $\mathrm{n} \times \mathrm{n}$ matrix.
\downarrow How do we know whether or not A^{-1} exists?

- If A^{-1} exists, how do we find it?

Solution

The matrix inversion algorithm!

Although the formula for the inverse of a 2×2 matrix is quicker and easier to use than the matrix inversion algorithm, the general formula for the inverse an $\mathrm{n} \times \mathrm{n}$ matrix, $\mathrm{n} \geq 3$ (which we will see later), is more complicated and difficult to use than the matrix inversion algorithm. To find inverses of square matrices that are not 2×2, the matrix inversion algorithm is the most efficient method to use.

The Matrix Inversion Algorithm
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. To find A^{-1}, if it exists,
Step 1 take the $\mathrm{n} \times 2 \mathrm{n}$ matrix

$$
\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{n}}\right]
$$

obtained by augmenting A with the $\mathrm{n} \times \mathrm{n}$ identity matrix, I_{n}.
Step 2 Perform elementary row operations to transform $\left[A \mid I_{n}\right]$ into a reduced row-echelon matrix.

Theorem (Matrix Inverses)
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. Then the following conditions are equivalent.

1. A is invertible.
2. the reduced row-echelon form on A is I.
3. $\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{n}}\right]$ can be transformed into $\left[\mathrm{I}_{\mathrm{n}} \mid \mathrm{A}^{-1}\right]$ using the Matrix Inversion Algorithm.

Problem

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.
Solution
Using the matrix inversion algorithm

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \rightarrow+\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right] \rightarrow \text { (1) }
$$

From this, we see that A has no inverse.

Problem
Let $\mathrm{A}=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A , if it exists.

Solution
Using the matrix inversion algorithm

$$
\begin{aligned}
& {[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 4 & -7 & 1 & -3 & 0 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 25 & -3 & 5 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & \frac{10}{25} & 0 & -\frac{5}{25} \\
0 & 1 & 0 & \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\left[\mathrm{I} \mid \mathrm{A}^{-1}\right]
\end{aligned}
$$

Solution (continued)
Therefore, A^{-1} exists, and

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{10}{25} & 0 & -\frac{5}{25} \\
\frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
-\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\frac{1}{25}\left[\begin{array}{rrr}
10 & 0 & -5 \\
1 & -10 & 7 \\
-3 & 5 & 4
\end{array}\right] .
$$

Remark

It is always a good habit to check your answer by computing AA^{-1} and $\mathrm{A}^{-1} \mathrm{~A}$.

One can use matrix inverse to solve $A \vec{x}=\vec{b}$ when there are n linear equations in n variables, i.e., A is a square matrix.

Example

The system of linear equations

$$
\begin{array}{r}
2 x-7 y=3 \\
5 x-18 y=8
\end{array}
$$

can be written in matrix form as $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right]
$$

You can check that $A^{-1}=\left[\begin{array}{rr}18 & -7 \\ 5 & -2\end{array}\right]$.

Example (continued)
Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\mathrm{I} \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

i.e., $A \vec{x}=\vec{b}$ has the unique solution given by $\vec{x}=A^{-1} \vec{b}$. Therefore,

$$
\overrightarrow{\mathrm{x}}=\mathrm{A}^{-1}\left[\begin{array}{l}
3 \\
8
\end{array}\right]=\left[\begin{array}{rr}
18 & -7 \\
5 & -2
\end{array}\right]\left[\begin{array}{l}
3 \\
8
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

is the unique solution to the system.

Remark

The last example illustrates another method for solving a system of linear equations when the coefficient matrix is square and invertible. Unless that coefficient matrix is 2×2, this is generally NOT an efficient method for solving a system of linear equations.

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
\mathrm{A}^{-1}(\mathrm{AB}) & =\mathrm{A}^{-1}(\mathrm{AC}) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B} & =\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C} \\
\mathrm{IB} & =\mathrm{IC} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

2. If $\mathrm{BA}=\mathrm{CA}$, then

$$
\begin{aligned}
(\mathrm{BA}) \mathrm{A}^{-1} & =(\mathrm{CA}) \mathrm{A}^{-1} \\
\mathrm{~B}\left(\mathrm{AA}^{-1}\right) & =\mathrm{C}\left(\mathrm{AA}^{-1}\right) \\
\mathrm{BI} & =\mathrm{CI} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

Problem
Can you find square matrices A, B and C for which $\mathrm{AB}=\mathrm{AC}$ but $\mathrm{B} \neq \mathrm{C}$?

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}=\left(\mathrm{AA}^{-1}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}=\mathrm{I}
$$

Hence, ??? $=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$, i.e., $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$.

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ?? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B}=\mathrm{B}^{-1} \mathrm{IB}=\mathrm{B}^{-1} \mathrm{~B}=\mathrm{I}
$$

Hence, ??? $=\mathrm{B}^{-1} \mathrm{~A}^{-1}$, i.e., $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$.

The previous two examples prove the first two parts of the following theorem.

Theorem (Properties of Inverses)

1. If A is an invertible matrix, then $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$.
2. If A and B are invertible matrices, then AB is invertible and

$$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1} .
$$

3. If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, then $A_{1} A_{2} \cdots A_{k}$ is invertible and

$$
\left(\mathrm{A}_{1} \mathrm{~A}_{2} \cdots \mathrm{~A}_{\mathrm{k}}\right)^{-1}=\mathrm{A}_{\mathrm{k}}^{-1} \mathrm{~A}_{\mathrm{k}-1}^{-1} \cdots \mathrm{~A}_{2}^{-1} \mathrm{~A}_{1}^{-1} .
$$

Theorem (More Properties of Inverses)

1. I is invertible, and $\mathrm{I}^{-1}=\mathrm{I}$.
2. If A is invertible, so is A^{-1}, and $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.
3. If A is invertible, so is A^{k}, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$. (A^{k} means A multiplied by itself k times)
4. If A is invertible and $\mathrm{p} \in \mathbb{R}$ is nonzero, then pA is invertible, and $(\mathrm{pA})^{-1}=\frac{1}{\mathrm{p}} \mathrm{A}^{-1}$.

Example

Given $\left(3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}\right)^{-1}=2\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, we wish to find the matrix A. Taking inverses of both sides of the equation:

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left(2\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\right)^{-1} \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]^{-1} \\
& =\frac{1}{2}\left[\begin{array}{rr}
3 & -1 \\
-2 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-3 \mathrm{I} \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
-\frac{3}{2} & -\frac{1}{2} \\
-1 & -\frac{5}{2}
\end{array}\right] \\
\mathrm{A} & =\left[\begin{array}{ll}
\frac{3}{2} & 1 \\
\frac{1}{2} & \frac{5}{2}
\end{array}\right]
\end{aligned}
$$

Problem

True or false? Justify your answer.

$$
\text { If } \mathrm{A}^{3}=4 \mathrm{I} \text {, then } \mathrm{A} \text { is invertible. }
$$

Solution

To show A is invertible, We need to find:

$$
\mathrm{A} ? ? ?=? ? \mathrm{~A}=\mathrm{I} .
$$

Because $\mathrm{A}^{3}=4 \mathrm{I}$, we see that

$$
\frac{1}{4} \mathrm{~A}^{3}=\mathrm{I}
$$

so

$$
\left(\frac{1}{4} \mathrm{~A}^{2}\right) \mathrm{A}=\mathrm{I} \quad \text { and } \quad \mathrm{A}\left(\frac{1}{4} \mathrm{~A}^{2}\right)=\mathrm{I} .
$$

Therefore, A is invertible, and ??? $=\frac{1}{4} \mathrm{~A}^{2}$, i.e., $\mathrm{A}^{-1}=\frac{1}{4} \mathrm{~A}^{2}$.

Theorem (Inverse Theorem)

Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

1. A is invertible.
2. The rank of A is n .
3. The reduced row echelon form of A is I_{n}.
4. $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has only the trivial solution, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
5. A can be transformed to I_{n} by elementary row operations.
6. The system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for any choice of \vec{b}.
7. The system $A \vec{x}=\vec{b}$ has at least one solution \vec{x} for any choice of \vec{b}.
8. There exists an $\mathrm{n} \times \mathrm{n}$ matrix C with the property that $\mathrm{CA}=\mathrm{I}_{\mathrm{n}}$.
9. There exists an $\mathrm{n} \times \mathrm{n}$ matrix C with the property that $\mathrm{AC}=\mathrm{I}_{\mathrm{n}}$.

$$
\begin{align*}
& (1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \\
& \text { I } \tag{9}\\
& \Uparrow \quad \Downarrow \\
& \text { (8) } \Leftarrow \tag{7}
\end{align*}
$$

Proof.
(1), (2), (4), (5) and (6) are all equivalent.
$(6) \Rightarrow(7)$ is clear. As for $(7) \Rightarrow(8)$, let \vec{c}_{j} be one of the solution of $A \vec{x}=\vec{e}_{j}$. The

$$
\mathrm{A}\left[\vec{c}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]=\left[\overrightarrow{\mathrm{e}}_{1}, \cdots, \vec{e}_{\mathrm{n}}\right]=\mathrm{I}
$$

Hence, (8) holds with $\mathrm{C}=\left[\overrightarrow{\mathrm{c}}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]$.
$(1) \Rightarrow(8)$ and (9): Using $\mathrm{C}=\mathrm{A}^{-1}$.
(8) \Rightarrow (4): Whenever \vec{x} is a sol. i.e., $A \vec{x}=\overrightarrow{0}$, then $\vec{x}=\mathrm{I} \overrightarrow{\mathrm{x}}=\mathrm{CA} \overrightarrow{\mathrm{x}}=\mathrm{C} \overrightarrow{0}=\overrightarrow{0}$. Hence, $\overrightarrow{0}$ is the only solution. (4) holds true.
$(9) \Rightarrow(1)$: By reversing the roles of A and C and apply (8) to see that C is invertible. Thus A is the inverse of C , and hence A is itself invertible.

Corollary
If A and B are $\mathrm{n} \times \mathrm{n}$ matrices such that $\mathrm{AB}=\mathrm{I}$, then $\mathrm{BA}=\mathrm{I}$. Furthermore, A and B are invertible, with $B=A^{-1}$ and $A=B^{-1}$.

Remark

Important Fact In Corollary, it is essential that the matrices be square.

Theorem
If A and B are matrices such that $\mathrm{AB}=\mathrm{I}$ and $\mathrm{BA}=\mathrm{I}$, then A and B are square matrices (of the same size).

Example

$$
\begin{aligned}
& \text { Let } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \quad \text { and } \quad \mathrm{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right] \text {. Then } \\
& \mathrm{AB}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}_{2}
\end{aligned}
$$

and

$$
\mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 5 & 1
\end{array}\right] \neq \mathrm{I}_{3} .
$$

Remark

This example illustrates why "an inverse" of a non-square matrix doesn't make sense. If A is $\mathrm{m} \times \mathrm{n}$ and B is $\mathrm{n} \times \mathrm{m}$, where $\mathrm{m} \neq \mathrm{n}$, then even if $\mathrm{AB}=\mathrm{I}$, it will never be the case that $\mathrm{BA}=\mathrm{I}$.

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Inverse of Transformations

Definition

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\vec{x} \in \mathbb{R}^{\mathrm{n}}$,

$$
(S \circ T)(\vec{x})=\vec{x} \quad \text { and } \quad(T \circ S)(\vec{x})=\vec{x} .
$$

Then T and S are invertible transformations; S is called an inverse of T , and T is called an inverse of S . (Geometrically, S reverses the action of T , and T reverses the action of S.)

Theorem
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ be a matrix transformation induced by matrix A . Then we have:

1. A is invertible if and only if T has an inverse.
2. In the case where T has an inverse, the inverse is unique and is denoted T^{-1}.
3. Furthermore, $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is induced by the matrix A^{-1}.

Fundamental Identities relating T and T^{-1}

1. $\mathrm{T}^{-1} \circ \mathrm{~T}=1_{\mathbb{R}^{n}}$
2. $\mathrm{T} \circ \mathrm{T}^{-1}=1_{\mathbb{R}^{\mathrm{n}}}$

Example

Let $\mathrm{T}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be a transformation given by

$$
\mathrm{T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+\mathrm{y} \\
\mathrm{y}
\end{array}\right]
$$

Then T is a linear transformation induced by $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
Notice that the matrix A is invertible. Therefore the transformation T has an inverse, T^{-1}, induced by

$$
A^{-1}=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]
$$

Example (continued)
Consider the action of T and T^{-1} :

$$
\begin{gathered}
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right] ; \\
T^{-1}\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{gathered}
$$

Therefore,

$$
\mathrm{T}^{-1}\left(\mathrm{~T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]\right)=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]
$$

